Part Number Hot Search : 
KP500A BU806 IL386D 4303F5 SRAF530 073644 SP483EE 1N5265B
Product Description
Full Text Search
 

To Download MCF5329CVM240 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Freescale Semiconductor Data Sheet: Advance Information
MCF5329DS Rev. 0.1, 03/2006
MCF5329 ColdFire(R) Microprocessor Data Sheet
Supports MCF5327, MCF5328, & MCF5329
by: Microcontroller Division
The MCF532x devices are a family of highly-integrated 32-bit microprocessors based on the Version 3 ColdFire microarchitecture. All MCF532x devices contain a 32-Kbyte internal SRAM, an LCD controller, USB host and On-the-Go controllers, a 2-bank SDR/DDR SDRAM controller, a 16-channel DMA controller, up to three UARTs, a queued SPI, as well as other peripherals that enable the MCF532x family for use in general purpose industrial control applications. Optional peripherals include a Fast Ethernet controller, a CAN module, and cryptography hardware accelerators. This document provides an overview of the MCF532x microprocessor family, focusing on its highly diverse feature set. It was written from the perspective of the MCF5329 device. However, it also pertains to the MCF5327, and MCF5328. See the following section for a summary of differences between the various devices of the MCF532x family.
Table of Contents
1 2 3 4 5 6 MCF532x Family Configurations .........................2 Ordering Information ...........................................3 Signal Descriptions..............................................3 Mechanicals and Pinouts ..................................10 Preliminary Electrical Characteristics ................15 Revision History ................................................46
This document contains information on a new product. Specifications and information herein are subject to change without notice. (c) Freescale Semiconductor, Inc., 2006. All rights reserved. * Preliminary
MCF532x Family Configurations
1
MCF532x Family Configurations
Table 1. MCF532x Family Configurations
Module ColdFire Version 3 Core with EMAC (Enhanced Multiply-Accumulate Unit) Core (System) Clock Peripheral and External Bus Clock (Core clock / 3) Performance (Dhrystone/2.1 MIPS) Unified Cache Static RAM (SRAM) LCD Controller SDR/DDR SDRAM Controller USB 2.0 Host USB 2.0 On-the-Go UTMI+ Low Pin Interface (ULPI) Synchronous Serial Interface (SSI) Fast Ethernet Controller (FEC) Cryptography Hardware Accelerators FlexCAN 2.0B communication module UARTs I
2C
The following table compares the various device derivatives available within the MCF532x family.
MCF5327 x
MCF5328 x up to 240 MHz up to 80 MHz up to 211 16 Kbytes 32 Kbytes
MCF5329 x
x x x x -- -- -- -- -- 3 x x x x 4 x 4 x 2 x x x x 196 MAPBGA
x x x x x x x -- -- 3 x x x x 4 x 4 x 2 x x x x 256 MAPBGA
x x x x x x x x x 3 x x x x 4 x 4 x 2 x x x x 256 MAPBGA
QSPI PWM Module Real Time Clock 32-bit DMA Timers Watchdog Timer (WDT) Periodic Interrupt Timers (PIT) Edge Port Module (EPORT) Interrupt Controllers (INTC) 16-channel Direct Memory Access (DMA) FlexBus External Interface General Purpose I/O Module (GPIO) JTAG - IEEE(R) 1149.1 Test Access Port Package
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 2 Preliminary Freescale Semiconductor
Ordering Information
2
Ordering Information
Table 2. Orderable Part Numbers
Freescale Part Number MCF5327CVM240 MCF5328CVM240 MCF5329CVM240 Description MCF5327 RISC Microprocessor, 196 MAPBGA MCF5328 RISC Microprocessor, 256 MAPBGA MCF5329 RISC Microprocessor, 256 MAPBGA Speed 240 MHz 240 MHz 240 MHz Temperature -40 to +85 C -40 to +85 C -40 to +85 C
3
Signal Descriptions
The following table lists all the MCF532x pins grouped by function. The "Dir" column is the direction for the primary function of the pin only. Refer to Section 4, "Mechanicals and Pinouts," for package diagrams. For a more detailed discussion of the MCF532x signals, consult the MCF5329 Reference Manual (MCF5329RM). NOTE In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A23), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon. NOTE The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality.
Table 3. MCF5327/8/9 Signal Information and Muxing
Signal Name GPIO Alternate 1 Alternate 2 Dir.1 MCF5327 196 MAPBGA MCF5328 256 MAPBGA MCF5329 256 MAPBGA
Reset RESET2 RSTOUT -- -- -- -- -- -- Clock EXTAL XTAL2 EXTAL32K XTAL32K -- -- -- -- -- -- -- -- -- -- -- -- I O I O L14 K14 M11 N11 P16 N16 P13 R13 P16 N16 P13 R13 I O M12 P14 N15 P14 N15 P14
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 3
Signal Descriptions
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name FB_CLK GPIO -- Alternate 1 -- Alternate 2 Dir.1 -- Mode Selection RCON2 DRAMSEL -- -- -- -- -- -- FlexBus A[23:22] A[21:16] -- -- FB_CS[5:4] -- -- -- O O B11,C11 B12, A12, D11, C12, B13, A13 A14, B14 C13, C14, D12 D13 D14, E11-14, F11-F14, G14 H3-H1, J4-J1, K1, L4, M2, M3, N1, N2, P1, P2, N3 F4-F1, G4-G2, L5, N4, P4, M5, N5, P5, M6 N6 H4, P3, G1, M4 L7 G13 P6 D2 C13, D13 E13, A14, B14, C14, A15, B15 D14, B16 C15, C16, D15 D16 E14-E16, F13-F16, G16- G14 M1-M4, N1-N4, T3, P4, R4, T4, N5, P5, R5, T5 J3-J1, K4-K1, L2, R6, N7, P7, R7, T7, P8, R8 T8 L4, P6, L3, N6 R9 G13 N8 H4 C13, D13 E13, A14, B14, C14, A15, B15 D14, B16 C15, C16, D15 D16 E14-E16, F13-F16, G16- G14 M1-M4, N1-N4, T3, P4, R4, T4, N5, P5, R5, T5 J3-J1, K4-K1, L2, R6, N7, P7, R7, T7, P8, R8 T8 L4, P6, L3, N6 R9 G13 N8 H4 I I N7 G10 M8 H12 M8 H12 O MCF5327 196 MAPBGA L1 MCF5328 256 MAPBGA T2 MCF5329 256 MAPBGA T2
A[15:14] A[13:11] A10 A[9:0]
-- -- -- --
SD_BA[1:0] SD_A[13:11] -- SD_A[9:0]
-- -- -- --
O O O O
D[31:16]
--
SD_D[31:16]3
--
O
D[15:1]
--
FB_D[31:17]3
--
O
D02 BE/BWE[3:0] OE TA2 R/W TS
-- PBE[3:0] PBUSCTL3 PBUSCTL2 PBUSCTL1 PBUSCTL0
FB_D[16]3 SD_DQM[3:0] -- -- -- DACK0
-- -- -- -- -- -- Chip Selects
O O O I O O
FB_CS[5:4] FB_CS[3:1]
PCS[5:4] PCS[3:1]
--
--
O O
-- A11, D10, C10
B13, A13 A12, B12, C12
B13, A13 A12, B12, C12
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 4 Preliminary Freescale Semiconductor
Signal Descriptions
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name FB_CS0 GPIO -- Alternate 1 -- Alternate 2 Dir.1 -- SDRAM Controller SD_A10 SD_CKE SD_CLK SD_CLK SD_CS1 SD_CS0 SD_DQS3 SD_DQS2 SD_SCAS SD_SRAS SD_SDR_DQS SD_WE -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- O O O O O O O O O O O O L2 E1 K3 K2 -- E2 H5 L6 L3 M1 K4 D1 P2 H2 R1 R2 J4 H1 L1 T6 P3 R3 P1 H3 P2 H2 R1 R2 J4 H1 L1 T6 P3 R3 P1 H3 O MCF5327 196 MAPBGA B10 MCF5328 256 MAPBGA D12 MCF5329 256 MAPBGA D12
External Interrupts Port4 IRQ72 IRQ62 IRQ52 IRQ42 IRQ32 IRQ22 IRQ12 PIRQ72 PIRQ62 PIRQ52 PIRQ42 PIRQ32 PIRQ22 PIRQ12 -- USBHOST_ VBUS_EN2 USBHOST_ VBUS_OC2 SSI_MCLK2 -- USB_CLKIN2 DREQ12 -- -- -- -- -- -- SSI_CLKIN2 FEC FEC_MDC FEC_MDIO FEC_TXCLK FEC_TXEN FEC_TXD0 FEC_COL FEC_RXCLK FEC_RXDV PFECI2C3 PFECI2C2 PFECH7 PFECH6 PFECH5 PFECH4 PFECH3 PFECH2 I2C_SCL2 I2C_SDA2 -- -- ULPI_DATA0 ULPI_CLK ULPI_NXT ULPI_STP -- -- -- -- -- -- -- -- O I/O I O O I I I -- -- -- -- -- -- -- -- C1 C2 A2 B2 E4 A8 C8 D8 C1 C2 A2 B2 E4 A8 C8 D8 I I I I I I I H14 -- -- H13 H12 J14 J13 J13 J14 J15 J16 K14 K15 K16 J13 J14 J15 J16 K14 K15 K16
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 5
Signal Descriptions
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name FEC_RXD0 FEC_CRS FEC_TXD[3:1] FEC_TXER FEC_RXD[3:1] FEC_RXER GPIO PFECH1 PFECH0 PFECL[7:5] PFECL4 PFECL[3:1] PFECL0 Alternate 1 ULPI_DATA4 ULPI_DIR ULPI_DATA[3:1] -- ULPI_DATA[7:5] -- Alternate 2 Dir.1 -- -- -- -- -- -- LCD Controller LCD_D17 LCD_D16 LCD_D17 LCD_D16 LCD_D15 LCD_D14 LCD_D13 LCD_D12 LCD_D[11:8] LCD_D7 LCD_D6 LCD_D5 LCD_D4 LCD_D[3:0] LCD_ACD/ LCD_OE LCD_CLS PLCDDH1 PLCDDH0 PLCDDH1 PLCDDH0 PLCDDM7 PLCDDM6 PLCDDM5 PLCDDM4 CANTX CANRX -- -- FEC_COL FEC_CRS FEC_RXCLK FEC_RXDV -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- O O O O O O O O O O O O O O O O O O O O O O O -- -- A6 B6 C6 D6 A5 B5 C5, D5, A4, B4 C4 B3 A3 A2 D4, C3, D3, B2 D7 C7 B7 A7 A8 B8 C8 D8 B9 -- -- C9 D9 A7 B7 C7 D7 D6, E6, A5, B5 C5 D5 A4 A3 B4, C4, B3, C3 B9 A9 D10 C10 B10 A10 A11 B11 C11 C9 D9 -- -- A7 B7 C7 D7 D6, E6, A5, B5 C5 D5 A4 A3 B4, C4, B3, C3 B9 A9 D10 C10 B10 A10 A11 B11 C11 I I O O I I MCF5327 196 MAPBGA -- -- -- -- -- -- MCF5328 256 MAPBGA C6 B8 D3-D1 B1 E7, A6, B6 D4 MCF5329 256 MAPBGA C6 B8 D3-D1 B1 E7, A6, B6 D4
PLCDDM[3:0] FEC_RXD[3:0] PLCDDL7 PLCDDL6 PLCDDL5 PLCDDL4 PLCDDL[3:0] PLCDCTLH0 PLCDCTLL7 FEC_RXER FEC_TXCLK FEC_TXEN FEC_TXER FEC_TXD[3:0] -- -- -- -- -- -- -- -- --
LCD_CONTRAST PLCDCTLL6 LCD_FLM/ LCD_VSYNC LCD_LP/ LCD_HSYNC LCD_LSCLK LCD_PS LCD_REV LCD_SPL_SPR PLCDCTLL5 PLCDCTLL4 PLCDCTLL3 PLCDCTLL2 PLCDCTLL1 PLCDCTLL0
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 6 Preliminary Freescale Semiconductor
Signal Descriptions
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2 Dir.1 MCF5327 196 MAPBGA MCF5328 256 MAPBGA MCF5329 256 MAPBGA
USB Host & USB On-the-Go USBOTG_M USBOTG_P USBHOST_M USBHOST_P -- -- -- -- -- -- -- -- -- -- -- -- I/O I/O I/O I/O J12 K13 L12 M13 L15 L16 M15 M16 L15 L16 M15 M16
FlexCAN (MCF5329 only) CANRX and CANTX do not have dedicated bond pads. Please refer to the following pins for muxing: I2C_SDA, SSI_RXD, or LCD_D16 for CANRX and I2C_SCL, SSI_TXD, or LCD_D17 for CANTX. PWM PWM7 PWM5 PWM3 PWM1 PPWM7 PPWM5 PPWM3 PPWM1 -- -- DT3OUT DT2OUT -- -- DT3IN DT2IN SSI SSI_MCLK SSI_BCLK SSI_FS SSI_RXD2 SSI_TXD2 SSI_RXD2 SSI_TXD2 PSSI4 PSSI3 PSSI2 PSSI1 PSSI0 PSSI1 PSSI0 -- U2CTS U2RTS U2RXD U2TXD U2RXD U2TXD -- PWM7 PWM5 CANRX CANTX -- -- I2C I2C_SCL2 I2C_SDA2 I2C_SCL2 I2C_SDA2 PFECI2C1 PFECI2C0 PFECI2C1 PFECI2C0 CANTX CANRX -- -- U2TXD U2RXD U2TXD U2RXD DMA DACK[1:0] and DREQ[1:0] do not have dedicated bond pads. Please refer to the following pins for muxing: TS for DACK0, DT0IN for DREQ0, DT1IN for DACK1, and IRQ1 for DREQ1. QSPI QSPI_CS2 QSPI_CS1 PQSPI5 PQSPI4 U2RTS PWM7 -- USBOTG_ PU_EN O O P10 L11 T12 T13 T12 T13 I/O I/O I/O I/O -- -- E3 E4 -- -- F3 F2 F3 F2 -- -- I/O I/O I/O I O I O -- -- -- -- -- -- -- G4 F4 G3 -- -- G2 G1 G4 F4 G3 G2 G1 -- -- I/O I/O I/O I/O -- -- G12 G11 H13 H14 H15 H16 H13 H14 H15 H16
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 7
Signal Descriptions
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name QSPI_CS0 QSPI_CLK QSPI_DIN QSPI_DOUT GPIO PQSPI3 PQSPI2 PQSPI1 PQSPI0 Alternate 1 PWM5 I2C_SCL2 U2CTS I2C_SDA Alternate 2 Dir.1 -- -- -- -- UARTs U1CTS U1RTS U1TXD U1RXD U0CTS U0RTS U0TXD U0RXD PUARTL7 PUARTL6 PUARTL5 PUARTL4 PUARTL3 PUARTL2 PUARTL1 PUARTL0 SSI_BCLK SSI_FS SSI_TXD2 SSI_RXD2 -- -- -- -- -- -- -- -- -- -- -- -- I O O I I O O I C9 D9 A9 A10 P13 N12 P12 P11 D11 E10 E11 E12 R15 T15 T14 R14 D11 E10 E11 E12 R15 T15 T14 R14 O O I O MCF5327 196 MAPBGA -- N10 L10 M10 MCF5328 256 MAPBGA P11 R12 N12 P12 MCF5329 256 MAPBGA P11 R12 N12 P12
Note: The UART2 signals are multiplexed on the QSPI, SSI, DMA Timers, and I2C pins. DMA Timers DT3IN DT2IN DT1IN DT0IN PTIMER3 PTIMER2 PTIMER1 PTIMER0 DT3OUT DT2OUT DT1OUT DT0OUT U2RXD U2TXD DACK1 DREQ02 BDM/JTAG5 JTAG_EN6 DSCLK PSTCLK BKPT DSI DSO DDATA[3:0] PST[3:0] -- -- -- -- -- -- -- -- -- TRST2 TCLK
2
I I I I
C1 B1 A1 C2
F1 E1 E2 E3
F1 E1 E2 E3
-- -- -- -- -- -- -- --
I I O I I O O O
J11 N14 M7 N13 M14 P9
M13 P15 T9 R16 N14 N11
M13 P15 T9 R16 N14 N11
TMS2 TDI2 TDO -- --
P7, L8, M8, N9, P9, N10, N9, P9, N10, N8 P10 P10 P8, L9, M9, N9 R10, T10, R11, T11 R10, T10, R11, T11
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 8 Preliminary Freescale Semiconductor
Signal Descriptions
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2 Dir.1 MCF5327 196 MAPBGA MCF5328 256 MAPBGA MCF5329 256 MAPBGA
Test TEST6 PLL_TEST
7
-- --
-- --
-- -- Power Supplies
I I
E10 --
A16 N13
A16 N13
EVDD
--
--
--
E6, E7, F5-F7, H9, J8, J9, K8, K9
E8, F5-F8, E8, F5-F8, G5, G6, H5, G5, G6, H5, H6, J11, H6, J11, K11, K12, K11, K12, L9-L11, M9, L9-L11, M9, M10 M10
IVDD PLL_VDD SD_VDD
-- -- --
-- -- --
-- -- --
E5, K5, K10 E5, G12, M5, E5, G12, M5, M11, M12 M11, M12 H10 J12 J12
E8, E9, E9, F9-F11, E9, F9-F11, F8-F10, J6, G11, H11, G11, H11, K6, J7, K7 J5, J6, K5, J5, J6, K5, K6, L5-L8, K6, L5-L8, M6, M7 M6, M7 K12 G6-G9, H6-H8, P9 L14 G7-G10, H7-H10, J7-10, K7-K10, L12, L13 K13 M14 L14 G7-G10, H7-H10, J7-10, K7-K10, L12, L13 K13 M14
USBOTG_VDD VSS
-- --
-- --
-- --
PLL_VSS USBHOST_VSS
-- --
-- --
-- --
H11 L13
NOTES: 1 Refers to pin's primary function. 2 Pull-up enabled internally on this signal for this mode. 3 Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by negating the DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins. 4 GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate functions. 5 If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins. 6 Pull-down enabled internally on this signal for this mode. 7 Must be left floating for proper operation of the PLL.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 9
Mechanicals and Pinouts
4
Mechanicals and Pinouts
NOTE The mechanical drawings are the latest revisions at the time of publication of this document. The most up-to-date mechanical drawings can be found at the product summary page located at http://www.freescale.com/coldfire.
This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF532x devices.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 10 Preliminary Freescale Semiconductor
Mechanicals and Pinouts
4.1
Pinout--256 MAPBGA
NOTE The pin at location N13 (PLL_TEST) must be left floating, else improper operation of the PLL module will occur.
Figure 1 shows a pinout of the MCF5328CVM240 and MCF5329CVM240 devices.
1 A NC FEC_ TXER FEC_ MDC FEC_ TXD1 DT2IN
2 FEC_ TXCLK FEC_ TXEN FEC_ MDIO FEC_ TXD2 DT1IN I2C_ SDA SSI_ RXD SD_CKE
3 LCD_ D4 LCD_ D1 LCD_ D0 FEC_ TXD3 DT0IN I2C_ SCL SSI_FS
4 LCD_ D5 LCD_ D3 LCD_ D2 FEC_ RXER FEC_ TXD0 SSI_ BCLK SSI_ MCLK TS
5 LCD_ D9 LCD_ D8 LCD_ D7 LCD_ D6 IVDD
6 FEC_ RXD2 FEC_ RXD1 FEC_ RXD0 LCD_ D11 LCD_ D10 EVDD
7 LCD_ D15 LCD_ D14 LCD_ D13 LCD_ D12 FEC_ RXD3 EVDD
8 FEC_ COL FEC_ CRS FEC_ RXCLK FEC_ RXDV EVDD
9 LCD_ CLS LCD_ ACD/OE LCD_ D17 LCD_ D16 SD_VDD
10 LCD_ LSCLK LCD_LP/ HSYNC
11 LCD_ PS LCD_ REV
12
13
14 A20
15 A17
16 TEST A
FB_CS3 FB_CS4
B
FB_CS2 FB_CS5
A19
A16
A14
B
C
LCD_FLM/ LCD_ FB_CS1 VSYNC SPL_SPR LCD_CON TRAST U1RTS U1CTS FB_CS0
A23
A18
A13
A12
C
D
A22
A15
A11
A10
D
E
U1TXD
U1RXD
A21
A9
A8
A7
E
F
DT3IN SSI_ TXD SD_ CS0 D13
EVDD
EVDD
SD_VDD
SD_VDD
SD_VDD
NC
A6
A5
A4
A3
F
G
EVDD
EVDD
VSS
VSS
VSS
VSS
SD_VDD
IVDD DRAM SEL PLL_ VDD EVDD
TA
A0
A1
A2
G
H
SD_WE
EVDD
EVDD
VSS
VSS
VSS
VSS
SD_VDD
PWM7
PWM5
PWM3
PWM1
H
J
D14
D15
SD_CS1 SD_VDD SD_VDD
VSS
VSS
VSS
VSS
EVDD
IRQ7 PLL_ VSS USB_ VSS JTAG_ EN PLL_ TEST EXTAL 32K XTAL 32K QSPI_ CS1 13
IRQ6
IRQ5
IRQ4
J
K
D9 SD_ DQS3 D31
D10
D11 BE/ BWE1 D29
D12 BE/ BWE3 D28
SD_VDD SD_VDD
VSS
VSS
VSS
VSS
EVDD
IRQ3 USBOTG _VDD
IRQ2 USB OTG_M
IRQ1 USB OTG_P
K
L
D8
SD_VDD SD_VDD SD_VDD SD_VDD
EVDD
EVDD
EVDD
VSS
L
M
D30
IVDD
SD_VDD SD_VDD BE/ BWE0 BE/ BWE2 D7 SD_ DQS2 6
RCON
EVDD
EVDD
IVDD TDO/ DSO QSPI_ CS0 PST1
IVDD QSPI_ DIN QSPI_ DOUT QSPI_ CLK QSPI_ CS2 12
USBHOST USB USB M _VSS HOST_M HOST_P TDI/DSI RESET TRST/ DSCLK U0CTS XTAL N
N
D27 SD_DR _DQS
D26
D25
D24
D19
D6
R/W
DDATA3
DDATA1
P
SD_A10
SD_CAS
D22
D18
D5
D2
DDATA2
DDATA0
RSTOUT
EXTAL TMS/ BKPT NC 16
P
R SD_CLK SD_CLK
SD_RAS
D21
D17
D4
D1
OE TCLK/ PSTCLK 9
PST3
U0RXD
R
T
NC 1
FB_CLK 2
D23 3
D20 4
D16 5
D3 7
D0 8
PST2 10
PST0 11
U0TXD 14
U0RTS 15
T
Figure 1. MCF5328CVM240 and MCF5329CVM240 Pinout Top View (256 MAPBGA)
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 11
Mechanicals and Pinouts
4.2
Package Dimensions--256 MAPBGA
X Y D
Laser mark for pin A1 identification in this area
Figure 2 shows MCF5328CVM240 and MCF5329CVM240 package dimensions.
M K A A2 A1 Z 4
256X
5 0.30 Z
E
0.15 Z
Detail K Rotated 90 Clockwise
Notes: 1. 2. 3. 4.
A B C D E F G H J K L M N P R T
Top View
0.20
15 13 11 16 14 12 10 15X
M e
Metalized mark for pin A1 identification in this area
S
7654321
15X
e
S
5.
256X
b 0.25 0.10
3
M M
Dimensions are in millimeters. Interpret dimensions and tolerances per ASME Y14.5M, 1994. Dimension b is measured at the maximum solder ball diameter, parallel to datum plane Z. Datum Z (seating plane) is defined by the spherical crowns of the solder balls. Parallelism measurement shall exclude any effect of mark on top surface of package.
Millimeters Min Max 1.25 1.60 0.27 0.47 1.16 REF 0.40 0.60 17.00 BSC 17.00 BSC 1.00 BSC 0.50 BSC
ZXY Z
Dim
Bottom View
View M-M
A A1 A2 b D E e S
Figure 2. 256 MAPBGA Package Outline
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 12 Preliminary Freescale Semiconductor
Mechanicals and Pinouts
4.3
1 A DT1IN
Pinout--196 MAPBGA
2 LCD_ D4 LCD_ D0 3 LCD_ D5 LCD_ D6 LCD_ D2 LCD_ D1 4 LCD_ D9 LCD_ D8 LCD_ D7 LCD_ D3 5 LCD_ D13 LCD_ D12 LCD_ D11 LCD_ D10 6 LCD_ D17 LCD_ D16 LCD_ D15 LCD_ D14 7 8 9 U1TXD 10 U1RXD 11 FB_CS3 12 A20 13 A16 14 A15 A
The pinout for the MCF5327CVM240 package is shown below.
LCD_FLM/ LCD_LP/ VSYNC HSYNC LCD_CON TRAST LCD_ CLS LCD_ ACD/OE LCD_ LSCLK LCD_ PS LCD_ REV
B
D2TIN
LCD_ FB_CS0 SPL_SPR
A23
A21
A17
A14
B
C
DT3IN
DT0IN
U1CTS
FB_CS1
A22
A18
A13
A12
C
D
SD_WE
TS
U1RTS
FB_CS2
A19
A11
A10
A9
D
E SD_CKE SD_CS0
I2C_SCL I2C_SDA
IVDD
EVDD
EVDD
SD_VDD SD_VDD
TEST
A8
A7
A6
A5
E
F
D12
D13
D14
D15
EVDD
EVDD
EVDD
SD_VDD SD_VDD SD_VDD
A4
A3
A2
A1
F
G
BE/ BWE1
D8
D9
D10
D11
VSS
VSS
VSS
VSS
DRAM SEL PLL_ VDD
PWM1
PWM3
TA
A0
G
H
D29
D30
D31
BE/ BWE3
SD_ DQS3
VSS
VSS
VSS
EVDD
PLL_ VSS JTAG_ EN
IRQ3
IRQ4
IRQ7
H
J
D25
D26
D27
D28
SD_VDD SD_VDD
SD_VDD
EVDD
EVDD
IVDD
USB OTG_M USBHOST _VDD
IRQ1
IRQ2
J
K
D24
SD_CLK
SD_CLK
SD_DR_ DQS
IVDD
SD_ DQS2
SD_VDD
EVDD
EVDD
IVDD
EVDD
USB OTG_P
XTAL
K
L
FB_CLK SD_A10
SD_CAS
D23
D7
D1
TCLK/ PSTCLK
DDATA1
PST1
QSPI_ DIN QSPI_ DOUT QSPI_ CLK QSPI_ CS2 10
QSPI_ CS1 EXTAL 32K XTAL 32K
USB USBHOST HOST_M _VSS USB HOST_P TMS/ BKPT
EXTAL
L
M SD_RAS
D22
D21
BE/ BWE0
D4
D0
RCON
DDATA0
PST0
RESET
TDI/DSI M
N
D20
D19
D16
D6
D3
R/W
DDATA3
PST3
TDO/ DSO
U0RTS
TRST/ DSCLK
N
P
D18 1
D17 2
BE/ BWE2 3
D5 4
D2 5
OE 6
DDATA2 7
PST2 8
VSS 9
U0RXD 11
U0TXD 12
U0CTS 13
RSTOUT P 14
Figure 3. MCF5327CVM240 Pinout Top View (196 MAPBGA)
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 13
Mechanicals and Pinouts
4.4
X Y
Package Dimensions--196 MAPBGA
D Laser mark for pin 1 identification in this area NOTES: 1. Dimensions are in millimeters. 2. Interpret dimensions and tolerances per ASME Y14.5M, 1994. 3. Dimension B is measured at the maximum solder ball diameter, parallel to datum plane Z. 4. Datum Z (seating plane) is defined by the spherical crowns of the solder balls. 5. Parallelism measurement shall exclude any effect of mark on top surface of package.
Millimeters DIM Min Max
Figure 4 shows the MCF5327CVM240 package dimensions.
M K
E
A A1 A2 b D E e S
1.32 1.75 0.27 0.47 1.18 REF 0.35 0.65 15.00 BSC 15.00 BSC 1.00 BSC 0.50 BSC
Top View
0.20
13X
M
e Metalized mark for pin 1 identification in this area
A B C
S
14 13 12 11 10 9 6 5 4 3 2 1
S
13X
D E F G H J K L M N
5 A A2 0.30 Z
e
A1
Z
4
0.15 Z
Detail K Rotated 90 Clockwise
3
196X
P
b 0.30 Z X Y 0.10 Z
Bottom View
View M-M
Figure 4. 196 MAPBGA Package Dimensions (Case No. 1128A-01)
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 14 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
5
Preliminary Electrical Characteristics
This document contains electrical specification tables and reference timing diagrams for the MCF5329 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5329. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed. NOTE The parameters specified in this MCU document supersede any values found in the module specifications.
5.1
Maximum Ratings
Table 4. Absolute Maximum Ratings1, 2
Rating Core Supply Voltage CMOS Pad Supply Voltage DDR/Memory Pad Supply Voltage PLL Supply Voltage Digital Input Voltage 3 Instantaneous Maximum Current Single pin limit (applies to all pins) 3, 4, 5 Operating Temperature Range (Packaged) Storage Temperature Range Symbol IVDD EVDD SDVDD PLLVDD VIN ID TA (TL - TH) Tstg Value - 0.5 to +2.0 - 0.3 to +4.0 - 0.3 to +4.0 - 0.3 to +2.0 - 0.3 to +3.6 25 - 40 to +85 - 55 to +150 Unit V V V V V mA C C
NOTES: 1 Functional operating conditions are given in Section 5.4, "DC Electrical Specifications." Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device. 2 This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS or EVDD). 3 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. 4 All functional non-supply pins are internally clamped to VSS and EVDD.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 15
Preliminary Electrical Characteristics
5
Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > EVDD) is greater than IDD, the injection current may flow out of EVDD and could result in external power supply going out of regulation. Insure external EVDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current conditions.
5.2
Thermal Characteristics
Table 5. Thermal Characteristics
Characteristic Junction to ambient, natural convection Junction to ambient (@200 ft/min) Junction to board Junction to case Junction to top of package Maximum operating junction temperature Four layer board (2s2p) Four layer board (2s2p) Symbol JMA JMA JB JC jt Tj 256MBGA 261,2 231,2 153 104 21,5 105 196MBGA 321,2 291,2 203 104 21,5 105 Unit C/W C/W C/W C/W C/W
oC
NOTES: 1 JMA and jt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of JmA and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the jt parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2. 2 Per JEDEC JESD51-6 with the board horizontal. 3 Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 4 Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 5 Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
The average chip-junction temperature (TJ) in C can be obtained from:
T J = T A + ( P D x JMA )
Eqn. 1
Where:
TA QJMA PD PINT PI/O = Ambient Temperature, C = Package Thermal Resistance, Junction-to-Ambient, C/W = PINT + PI/O = IDD x IVDD, Watts - Chip Internal Power = Power Dissipation on Input and Output Pins -- User Determined
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 16 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is:
K P D = -------------------------------( T J + 273C )
Eqn. 2
Solving equations 1 and 2 for K gives:
K = P D x ( T A x 273C ) + Q JMA x P D
2
Eqn. 3
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively for any value of TA.
5.3
ESD Protection
Table 6. ESD Protection Characteristics1, 2
Characteristics ESD Target for Human Body Model Symbol HBM Value 2000 Units V
NOTES: 1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2 A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.
5.4
DC Electrical Specifications
Table 7. DC Electrical Specifications
Characteristic Symbol IVDD PLLVDD EVDD SDVDD SDVDD SDVDD USBVDD EVIH EVIL SDVIH SDVIL SDVIH SDVIL Min 1.4 1.4 3.0 1.65 2.25 3.0 3.0 2 -0.05 TBD -0.05 2 -0.05 Max 1.6 1.6 3.6 1.95 2.75 3.6 3.6 EVDD + 0.05 0.8 SDVDD + 0.05 TBD SDVDD + 0.05 0.8 Unit V V V V V V V V V V V V V
Core Supply Voltage PLL Supply Voltage CMOS Pad Supply Voltage Mobile DDR/Bus Pad Supply Voltage DDR/Bus Pad Supply Voltage SDR/Bus Pad Supply Voltage USB Supply Voltage CMOS Input High Voltage CMOS Input Low Voltage Mobile DDR/Bus Input High Voltage Mobile DDR/Bus Input Low Voltage DDR/Bus Input High Voltage DDR/Bus Input Low Voltage
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 17
Preliminary Electrical Characteristics
Table 7. DC Electrical Specifications (continued)
Characteristic Input Leakage Current Vin = VDD or VSS, Input-only pins CMOS Output High Voltage IOH = -5.0 mA CMOS Output Low Voltage IOL = 5.0 mA DDR/Bus Output High Voltage IOH = -5.0 mA DDR/Bus Output Low Voltage IOL = 5.0 mA Weak Internal Pull-Up Device Current, tested at VIL Max.1 Input Capacitance All input-only pins All input/output (three-state) pins
2
Symbol Iin EVOH EVOL SDVOH SDVOL IAPU Cin
Min -1.0 EVDD - 0.4 -- SDVDD - 0.4 -- -10 -- --
Max 1.0 -- 0.4 -- 0.4 -130 7 7
Unit A V V V V A pF
NOTES: 1 Refer to the signals section for pins having weak internal pull-up devices. 2 This parameter is characterized before qualification rather than 100% tested.
5.4.1
PLL Power Filtering
To further enhance noise isolation, an external filter is strongly recommended for PLL analog VDD pins. The filter shown in Figure 5 should be connected between the board VDD and the PLLVDD pins. The resistor and capacitors should be placed as close to the dedicated PLLVDD pin as possible.
10 Board VDD 10 F 0.1 F PLL VDD Pin
GND
Figure 5. System PLL VDD Power Filter
5.4.2
USB Power Filtering
To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 6 should be connected between the board EVDD or IVDD and each of the USBVDD pins. The resistor and capacitors should be placed as close to the dedicated USBVDD pin as possible.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 18 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics 0 Board EVDD/IVDD 10 F 0.1 F USB VDD Pin
GND
Figure 6. USB VDD Power Filter
NOTE In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown.
5.4.3
Supply Voltage Sequencing and Separation Cautions
Figure 7 shows situations in sequencing the I/O VDD (EVDD), SDRAM VDD (SDVDD), PLL VDD (PLLVDD), and Core VDD (IVDD).
EVDD, SDVDD, USBVDD Supplies Stable 2.5V SDVDD (2.5V/1.8V)
DC Power Supply Voltage
3.3V
1.5V
1
IVDD, PLLVDD
2
0 Time Notes: 1. IVDD should not exceed EVDD, SDVDD or PLLVDD by more than 0.4 V at any time, including power-up. 2. Recommended that IVDD/PLLVDD should track EVDD/SDVDD up to 0.9 V, then separate for completion of ramps. 3. Input voltage must not be greater than the supply voltage (EVDD, SDVDD, IVDD, or PLLVDD) by more than 0.5 V at any time, including during power-up. 4. Use 1 ms or slower rise time for all supplies.
Figure 7. Supply Voltage Sequencing and Separation Cautions
The relationship between SDVDD and EVDD is non-critical during power-up and power-down sequences. Both SDVDD (2.5V or 3.3V) and EVDD are specified relative to IVDD.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 19
Preliminary Electrical Characteristics
5.4.3.1
Power Up Sequence
If EVDD/SDVDD are powered up with IVDD at 0 V, then the sense circuits in the I/O pads will cause all pad output drivers connected to the EVDD/SDVDD to be in a high impedance state. There is no limit on how long after EVDD/SDVDD powers up before IVDD must powered up. IVDD should not lead the EVDD, SDVDD or PLLVDD by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 s to avoid turning on the internal ESD protection clamp diodes. The recommended power up sequence is as follows: 1. Use 1 s or slower rise time for all supplies. 2. IVDD/PLLVDD and EVDD/SDVDD should track up to 0.9 V, then separate for the completion of ramps with EVDD/SD VDD going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.
5.4.3.2
Power Down Sequence
If IVDD/PLLVDD are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high impedance state. There is no limit on how long after IVDD and PLLVDD power down before EVDD or SDVDD must power down. IVDD should not lag EVDD, SDVDD, or PLLVDD going low by more than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies. The recommended power down sequence is as follows: 1. Drop IVDD/PLLVDD to 0 V. 2. Drop EVDD/SDVDD supplies.
5.5
Power Consumption Specifications
Estimated maximum RUN mode power consumption measurements are shown in the below figure.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 20 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
Estimated Power Consumption vs. Core Frequency 300 250 200 150 100 50 0 0 40 80 120 160 200 240 Core Frequency (MHz)
Figure 8. Estimated Maximum RUN Mode Power Consumption
Table 8 lists estimated maximum power and current consumption for the device in various operating modes.
Table 8. Estimated Maximum Power Consumption Specifications
Characteristic Run Mode - Total Power Dissipation Static Dynamic Core Operating Supply Current 1 Run Mode Pad Operating Supply Current Run Mode (application dependent) Wait Mode Stop Mode IDD -- EIDD -- -- -- 144 96 1 mA mA mA TBD mA Symbol Typical -- -- -- Max 250 5.74 244 Unit mW mW mW
Power Consumption (mW)
NOTES: 1 Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 21
Preliminary Electrical Characteristics
5.6
Num 1
Oscillator and PLL Electrical Characteristics
Table 9. PLL Electrical Characteristics
Characteristic PLL Reference Frequency Range Crystal reference External reference Core frequency CLKOUT Frequency1 Crystal Start-up Time2, 3 EXTAL Input High Voltage Crystal Mode4 All other modes (External, Limp) EXTAL Input Low Voltage Crystal Mode4 All other modes (External, Limp) XTAL Load Capacitance2 PLL Lock Time Duty Cycle of
2, 5
Symbol
Min. Value TBD TBD TBD TBD -- TBD TBD TBD TBD 5
Max. Value 16 16 240 80 10 TBD TBD TBD TBD 30 1 60
Unit
fref_crystal fref_ext fsys fsys/3 tcst VIHEXT VIHEXT VILEXT VILEXT
MHz MHz MHz MHz ms V V V V pF ms %
2 3 4
5
6 7 8
tlpll tdc
-- 40
reference 2
NOTES: 1 All internal registers retain data at 0 Hz. 2 This parameter is guaranteed by characterization before qualification rather than 100% tested. 3 Proper PC board layout procedures must be followed to achieve specifications. 4 This parameter is guaranteed by design rather than 100% tested. 5 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
5.7
External Interface Timing Characteristics
NOTE All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the FB_CLK output. All other timing relationships can be derived from these values. Timings listed in Table 10 are shown in Figure 10 and Figure 11.
Table 10 lists processor bus input timings.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 22 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics * The timings are also valid for inputs sampled on the negative clock edge. FB_CLK (80MHz)
TSETUP THOLD 1.5V
Input Setup And Hold
Invalid
1.5V
Valid
1.5V
Invalid
trise
Input Rise Time
Vh = VIH Vl = VIL
tfall
Input Fall Time
Vh = VIH Vl = VIL
FB_CLK
B4 B5
Inputs
Figure 9. General Input Timing Requirements
5.7.1
FlexBus
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 80MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface can be used. The FlexBus interface has six general purpose chip-selects (FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory interfaces. Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories.
5.7.1.1
FlexBus AC Timing Characteristics
The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the system clock.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 23
Preliminary Electrical Characteristics
Table 10. FlexBus AC Timing Specifications
Num Frequency of Operation FB1 FB2 FB3 FB4 FB5 FB6 FB7 FB8 FB9 Clock Period (FB_CLK) Address, Data, and Control Output Valid (A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE) Address, Data, and Control Output Hold (A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE) Data Input Setup Data Input Hold Transfer Acknowledge (TA) Input Setup Transfer Acknowledge (TA) Input Hold Address Output Valid (A[23:0]) Address Output Hold (A[23:0]) tFBCK tFBCHDCV tFBCHDCI tDVFBCH tDIFBCH tCVFBCH tCIFBCH tFBCHAV tFBCHAI Characteristic Symbol Min -- -- -- 1 3.5 0 4 0 -- 1 Max 80 12.5 7.0 -- -- -- -- -- 6.0 -- Unit Mhz ns ns ns ns ns ns ns ns ns
3
Notes fsys/3 tcyc
1
1, 2
NOTES: 1 Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.8.2, "DDR SDRAM AC Timing Characteristics" for SD_CS[3:0] timing. 2 The FlexBus supports programming an extension of the address hold. Please consult the MCF5329 Reference Manual for more information. 3 These specs are used when the A[23:0] signals are configured as 23-bit, non-muxed FlexBus address signals.
FB_CLK
FB1 FB3
A[23:0]
FB2
A[23:0]
FB5
D[31:0]
DATA
R/W
FB4
TS FB_CSn BE/BWEn
FB7
OE
FB6
TA
Figure 10. FlexBus Read Timing.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 24 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
FB_CLK
FB1 FB3
A[23:0]
FB2 FB3
D[31:0]
R/W
TS FB_CSn BE/BWEn
FB7
OE
FB6
TA
Figure 11. Flexbus Write Timing
5.8
SDRAM Bus
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports either standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.
5.8.1
SDR SDRAM AC Timing Characteristics
The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device's SDRAM controller is a DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must still be supplied to device for each data beat of an SDR read. Te processor accomplishes this by asserting a signal named SD_DQS during read cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the SDR_DQS signal and its usage.
Table 11. SDR Timing Specifications
Symbol Characteristic Frequency of Operation SD1 SD2 SD3 Clock Period Clock Skew Pulse Width High tSDCK tSDSK tSDCKH Symbol Min TBD 12.5 -- 0.45 Max 80 TBD TBD 0.55 SD_CLK
3
Unit Mhz ns
Notes
1 2
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 25
Preliminary Electrical Characteristics
Table 11. SDR Timing Specifications (continued)
Symbol SD4 SD5 SD6 SD7 SD8 SD9 SD10 SD11 SD12 SD13 Pulse Width Low Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA, SD_CS[1:0] - Output Valid Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA, SD_CS[1:0] - Output Hold SD_SDR_DQS Output Valid SD_DQS[3:0] input setup relative to SD_CLK SD_DQS[3:2] input hold relative to SD_CLK Data (D[31:0]) Input Setup relative to SD_CLK (reference only) Data Input Hold relative to SD_CLK (reference only) Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold Characteristic Symbol tSDCKH tSDCHACV tSDCHACI tDQSOV tDQVSDCH tDQISDCH tDVSDCH tDISDCH tSDCHDMV tSDCHDMI Min 0.45 -- 2.0 -- 0.25 x SD_CLK Max 0.55 0.5 x SD_CLK + 1.0 -- Self timed 0.40 x SD_CLK Unit SD_CLK ns ns ns ns
5 6
Notes
4
Does not apply. 0.5xSD_CLK fixed width. 0.25 x SD_CLK 1.0 -- 1.5 -- -- 0.75 x SD_CLK + 0.5 -- ns ns ns ns
7
8
NOTES: 1 The device supports same frequency of operation for both FlexBus and SDRAM clock operates as that of the internal bus clock. Please see the PLL chapter of the MCF5329 Reference Manual for more information on setting the SDRAM clock rate. 2 SD_CLK is one SDRAM clock in (ns). 3 Pulse width high plus pulse width low cannot exceed min and max clock period. 4 Pulse width high plus pulse width low cannot exceed min and max clock period. 5 SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from this guideline is expected. SD_DQS will only pulse during a read cycle and one pulse will occur for each data beat. 6 SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle variation from this guideline is expected. SDR_DQS will only pulse during a read cycle and one pulse will occur for each data beat. 7 The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does not affect the memory controller. 8 Since a read cycle in SDR mode still uses the DQS circuit within the device, it is most critical that the data valid window be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input setup spec is just provided as guidance.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 26 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
SD2 SD_CLK0 SD2 SD_CLK1
SD1
SD3
SD4
SD6 SD_CSn SD_RAS SD_CAS SD_WE A[23:0] SD_BA[1:0]
CMD
SD5
ROW
COL
SD12
SDDM SD13 D[31:0]
WD1
WD2
WD3
WD4
Figure 12. SDR Write Timing
SD2 SD_CLK0 SD2 SD_CLK1 SD_CSn, SD_RAS, SD_CAS, SD_WE A[23:0], SD_BA[1:0] SD6 SD1
CMD
SD5
3/4 MCLK Reference
ROW
COL
tDQS
SDDM SD7 SD_DQS
(Measured at Output Pin) Board Delay
SD9
SD_DDQS
(Measured at Input Pin) Board Delay
SD8
Delayed SD_CLK SD10 D[31:0] from Memories
WD1 WD2 WD3 WD4
NOTE: Data driven from memories relative to delayed memory clock.
SD11
Figure 13. SDR Read Timing
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 27
Preliminary Electrical Characteristics
5.8.2
DDR SDRAM AC Timing Characteristics
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte lanes. The following timing numbers are subject to change at anytime, and are only provided to aid in early board design. Please contact your local Freescale representative if questions develop.
Table 12. DDR Timing Specifications
Num Characteristic Frequency of Operation DD1 DD2 DD3 DD4 DD5 DD6 DD7 DD8 DD9 Clock Period Pulse Width High Pulse Width Low Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] - Output Valid Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] - Output Hold Write Command to first DQS Latching Transition Data and Data Mask Output Setup (DQ-->DQS) Relative to DQS (DDR Write Mode) Data and Data Mask Output Hold (DQS-->DQ) Relative to DQS (DDR Write Mode) Input Data Skew Relative to DQS (Input Setup) Symbol tDDCK tDDSK tDDCKH tDDCKL tSDCHACV tSDCHACI tCMDVDQ tDQDMV tDQDMI tDVDQ tDIDQ Min 80 TBD 0.45 0.45 -- 2.0 -- 1.5 1.0 -- 0.25 x SD_CLK + 0.5ns 0.5 0.9 0.4 0.25 0.4 0.6 Max TBD 12.5 0.55 0.55 0.5 x SD_CLK + 1.0 -- 1.25 -- -- 1 -- -- 1.1 0.6 Unit Mhz ns SD_CLK SD_CLK ns ns SD_CLK ns ns ns ns ns SD_CLK SD_CLK SD_CLK SD_CLK
5 6 7
Notes
1 2 3 3 4
8 9
DD10 Input Data Hold Relative to DQS.
DD11 DQS falling edge from SDCLK rising (output hold time) tDQLSDCH DD12 DQS input read preamble width DD13 DQS input read postamble width DD14 DQS output write preamble width DD15 DQS output write postamble width tDQRPRE tDQRPST tDQWPRE tDQWPST
NOTES: 1 The frequency of operation is either 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the same frequency as the internal bus clock. 2 SD_CLK is one SDRAM clock in (ns). 3 Pulse width high plus pulse width low cannot exceed min and max clock period. 4 Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature, and voltage variations. 5 This specification relates to the required input setup time of today's DDR memories. Rigoletto's output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory will be in violation. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0]. 6 The first data beat will be valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats will be valid for each subsequent DQS edge. 7 This specification relates to the required hold time of today's DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 28 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
8
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors). 9 Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.
SD_CLK VIX VMP VIX SD_CLK VID
Figure 14. SD_CLK and SD_CLK crossover timing
DD1 SD_CLK
DD2
DD3 SD_CLK
DD5 SD_CSn,SD_WE, SD_RAS, SD_CAS DD4 A[13:0]
CMD
DD6
ROW
COL
DD7
DM3/DM2 DD8 SD_DQS3/SD_DQS2 DD7 D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
DD8
Figure 15. DDR Write Timing
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 29
Preliminary Electrical Characteristics
DD1 SD_CLK
DD2
DD3 SD_CLK
DD5 SD_CSn,SD_WE, SD_RAS, SD_CAS DD4 A[13:0]
CL=2
CMD CL=2.5 ROW COL DQS Read Preamble
DD10 DD9
SD_DQS3/SD_DQS2 CL = 2
DQS Read Postamble
D[31:24]/D[23:16]
SD_DQS3/SD_DQS2 CL = 2.5
WD1 WD2 WD3 WD4 DQS Read DQS Read Preamble Postamble
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
Figure 16. DDR Read Timing
5.9
Num G1 G2 G3 G4
General Purpose I/O Timing
Table 13. GPIO Timing1
Characteristic FB_CLK High to GPIO Output Valid FB_CLK High to GPIO Output Invalid GPIO Input Valid to FB_CLK High FB_CLK High to GPIO Input Invalid Symbol tCHPOV tCHPOI tPVCH tCHPI Min -- 1.5 9 1.5 Max 10 -- -- -- Unit ns ns ns ns
NOTES: 1 GPIO pins include: IRQn, PWM, UART, FlexCAN, and Timer pins.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 30 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
FB_CLK
G1
GPIO Outputs
G2
G3
GPIO Inputs
G4
Figure 17. GPIO Timing
5.10 Reset and Configuration Override Timing
Table 14. Reset and Configuration Override Timing
Num R1 R2 R3 R4 R5 R6 R7 R8 Characteristic RESET Input valid to FB_CLK High FB_CLK High to RESET Input invalid RESET Input valid Time 1 FB_CLK High to RSTOUT Valid RSTOUT valid to Config. Overrides valid Configuration Override Setup Time to RSTOUT invalid Configuration Override Hold Time after RSTOUT invalid RSTOUT invalid to Configuration Override High Impedance Symbol tRVCH tCHRI tRIVT tCHROV tROVCV tCOS tCOH tROICZ Min 9 1.5 5 -- 0 20 0 -- Max -- -- -- 10 -- -- -- 1 Unit ns ns tCYC ns ns tCYC ns tCYC
NOTES: 1 During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.
FB_CLK
R1 R3
RESET
R2
R4
RSTOUT
R4 R8 R5 R6 R7
Configuration Overrides*: (RCON, Override pins])
Figure 18. RESET and Configuration Override Timing
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 31
Preliminary Electrical Characteristics
NOTE Refer to the CCM chapter of the MCF5329 Reference Manual for more information.
5.11 LCD Controller Timing Specifications
This sections lists the timing specifications for the LCD Controller.
Table 15. LCD_LSCLK Timing
Num T1 T2 T3 LCD_LSCLK Period Pixel data setup time Pixel data up time Parameter Minimum 25 11 11 Maximum 2000 -- -- Unit ns ns ns
Note: The pixel clock is equal to LCD_LSCLK / (PCD + 1). When it is in CSTN, TFT or monochrome mode with bus width = 1,LCD_LSCLK is equal to the pixel clock. When it is in monochrome with other bus width settings, LCD_LSCLK is equal to the pixel clock divided by bus width. The polarity of LCD_LSCLK and LCD_LD signals can also be programmed.
T1 LCD_LSCLK
LCD_LD[17:0] T2 T3
Figure 19. LCD_LSCLK to LCD_LD[17:0] timing diagram
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 32 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
Non-display region
T1 T3
Display region
T4
LCD_VSYNC LCD_HSYNC LCD_OE LCD_LD[17:0]
T2
Line Y
Line 1
Line Y
T5 LCD_HSYNC LCD_LSCLK LCD_OE LCD_LD[15:0]
T6
XMAX
T7
(1,1)
(1,2)
(1,X)
Figure 20. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing Table 16. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing
Number T1 T2 T3 T4 T5 T6 T7 Description End of LCD_OE to beginning of LCD_VSYNC LCD_HSYNC period LCD_VSYNC pulse width End of LCD_VSYNC to beginning of LCD_OE LCD_HSYNC pulse width End of LCD_HSYNC to beginning to LCD_OE End of LCD_OE to beginning of LCD_HSYNC Minimum T5+T6+T7-1 -- T2 1 1 3 1 Value (VWAIT1*T2)+T5+T6+T7-1 XMAX+T5+T6+T7 VWIDTH*T2 (VWAIT2*T2)+1 HWIDTH+1 HWAIT2+3 HWAIT1+1 Unit Ts Ts Ts Ts Ts Ts Ts
Note: Ts is the LCD_LSCLK period. LCD_VSYNC, LCD_HSYNC and LCD_OE can be programmed as active high or active low. In Figure 20, all 3 signals are active low. LCD_LSCLK can be programmed to be deactivated during the LCD_VSYNC pulse or the LCD_OE deasserted period. In Figure 20, LCD_LSCLK is always active. Note: XMAX is defined in number of pixels in one line.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 33
Preliminary Electrical Characteristics
XMAX
LCD_LSCLK
LCD_LD
D320
D1
D2
D320
LCD_SPL_SPR
T1
LCD_HSYNC
T2
T3
T2
LCD_CLS LCD_PS T7 LCD_REV
T4 T5 T6
T4
T7
Figure 21. Sharp TFT Panel Timing Table 17. Sharp TFT Panel Timing
Num T1 T2 T3 T4 T5 T6 T7 Description LCD_SPL/LCD_SPR pulse width End of LCD_LD of line to beginning of LCD_HSYNC End of LCD_HSYNC to beginning of LCD_LD of line LCD_CLS rise delay from end of LCD_LD of line LCD_CLS pulse width LCD_PS rise delay from LCD_CLS negation LCD_REV toggle delay from last LCD_LD of line Minimum -- 1 4 3 1 0 1 Value 1 HWAIT1+1 HWAIT2 + 4 CLS_RISE_DELAY+1 CLS_HI_WIDTH+1 PS_RISE_DELAY REV_TOGGLE_DELAY+1 Unit Ts Ts Ts Ts Ts Ts Ts
Note: Falling of LCD_SPL/LCD_SPR aligns with first LCD_LD of line. Note: Falling of LCD_PS aligns with rising edge of LCD_CLS. Note: LCD_REV toggles in every LCD_HSYN period.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 34 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
T1
T1
LCD_VSYNC
T2 LCD_HSYNC LCD_LSCLK
T3
XMAX
T4
T2
Ts LCD_LD[15:0]
Figure 22. Non-TFT Mode Panel Timing Table 18. Non-TFT Mode Panel Timing
Num T1 T2 T3 T4 Description LCD_HSYNC to LCD_VSYNC delay LCD_HSYNC pulse width LCD_VSYNC to LCD_LSCLK LCD_LSCLK to LCD_HSYNC Minimum 2 1 -- 1 Value HWAIT2 + 2 HWIDTH + 1 0 T3 Ts HWAIT1 + 1 Unit Tpix Tpix -- Tpix
Note: Ts is the LCD_LSCLK period while Tpix is the pixel clock period. LCD_VSYNC, LCD_HSYNC and LCD_LSCLK can be programmed as active high or active low. In Figure 22, all these 3 signals are active high. When it is in CSTN mode or monochrome mode with bus width = 1, T3 = Tpix = Ts. When it is in monochrome mode with bus width = 2, 4 and 8, T3 = 1, 2 and 4 Tpix respectively.
5.12 USB On-The-Go
The MCF5329 device is compliant with industry standard USB 2.0 specification.
5.13 ULPI Timing Specification
Control and data timing requirements for the ULPI pins are given in Table 19. These timings apply in synchronous mode only. All timings are measured with either a 60 MHz input clock from the USB_CLKIN pin or a 60MHz output clock at the ULPI_CLK pin. Both clocks need to maintain a 50% duty cycle. Control signals and 8-bit data are always clocked on the rising edge, while the optional double-edge 4-bit data signals are clocked on rising and falling edges. The ULPI interface on the MCF5329 processor is compliant with the industry standard definition.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 35
Preliminary Electrical Characteristics
THD TSD THC
TDDD
TDD THDD TDC TDDD TDC
TSC
THDD
ULPI_CLK ULPI_STP (Input) ULPI_DATA (Input-8bit) ULPI_DATA (Input-4bit) ULPI_DIR/ULPI_NXT (Output) ULPI_DATA (Output-8bit) ULPI_DATA (Output-4bit)
TSDD
TSDD
Figure 23. ULPI Timing Diagram Table 19. ULPI Interface Timing
Parameter Timing with reference to ULPI_CLK Setup time (control in, 8-bit data in) Setup time (control in, 8-bit data in) Output delay (control out, 8-bit data out) Timing with reference to USB_CLKIN Setup time (control in, 8-bit data in) Hold time (control in, 8-bit data in) Output delay (control out, 8-bit data out) TSC, TSD THC, THD TDC, TDD -- -1.5 -- 3.0 -- 6.0 ns ns ns TSC, TSD THC, THD TDC, TDD -- 0.0 -- 6.0 -- 9.0 ns ns ns Symbol Min Max Units
5.14 SSI Timing Specifications
The following figure and table lists the specifications for the SSI module.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 36 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
S1 S2 S3
SSI_BCLK
S4 S5
SSI_MCLK
STFS
S6
S7
SSI_TXD (Output)
STFS
S6
SSI_RXD (Input) Note: SSI External. Continous clock Synchronous mode only
Figure 24. SSI External Continous Clock Timing Diagram Table 20. SSI Timing
1.8 +/- 0.10V Num S1 S2 S3 S4 S5 S6 S7 SSI_BCLK clock period SSI_BCK high-level time SSI_BCK low-level time SSI_BCK rising edge to SSI_MCLK edge SSI_MCLK edge to SSI_BCLK rising edge SSI_TXD/SSI_RXD data set-up time SSI_TXD/SSI_RXD data hold time Description Minimum 1/(64fs)1 35 35 10 10 10 10 Maximum 49 -- -- -- -- -- -- ns ns ns ns ns ns ns Unit
NOTES: 1 fs is the sampling frequency. SSI_BCLK can be operated upto 512 times the sampling frequency to a max frequency of 49.152MHz
5.15 I2C Input/Output Timing Specifications
Table 21 lists specifications for the I2C input timing parameters shown in Figure 25.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 37
Preliminary Electrical Characteristics
Table 21. I2C Input Timing Specifications between SCL and SDA
Num I1 I2 I3 I4 I5 I6 I7 I8 I9 Characteristic Start condition hold time Clock low period I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) Data hold time I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) Clock high time Data setup time Start condition setup time (for repeated start condition only) Stop condition setup time Min 2 8 -- 0 -- 4 0 2 2 Max -- -- 1 -- 1 -- -- -- -- Units tcyc tcyc ms ns ms tcyc ns tcyc tcyc
Table 22 lists specifications for the I2C output timing parameters shown in Figure 25.
Table 22. I2C Output Timing Specifications between SCL and SDA
Num I11 I2 1 I3
2
Characteristic Start condition hold time Clock low period I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) Data hold time I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) Clock high time Data setup time Start condition setup time (for repeated start condition only) Stop condition setup time
Min 6 10 -- 7 -- 10 2 20 10
Max -- -- -- -- 3 -- -- -- --
Units tcyc tcyc s tcyc ns tcyc tcyc tcyc tcyc
I4 1 I5 I6
3 1
I7 1 I8 1 I9
1
NOTES: 1 Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 22. The I2C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 22 are minimum values. 2 Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values. 3 Specified at a nominal 50-pF load.
Figure 25 shows timing for the values in Table 22 and Table 21.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 38 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
I5 I2 I2C_SCL I1 I2C_SDA I4 I7 I8 I9 I6
I3
Figure 25. I2C Input/Output Timings
5.16 Fast Ethernet AC Timing Specifications
MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.
5.16.1 MII Receive Signal Timing (FEC_RXD[3:0], FEC_RXDV, FEC_RXER, and FEC_RXCLK)
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the FEC_RXCLK frequency. Table 23 lists MII receive channel timings.
Table 23. MII Receive Signal Timing
Num M1 M2 M3 M4 Characteristic FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK setup FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold FEC_RXCLK pulse width high FEC_RXCLK pulse width low Min 5 5 35% 35% Max -- -- 65% 65% Unit ns ns FEC_RXCLK period FEC_RXCLK period
Figure 26 shows MII receive signal timings listed in Table 23.
M3
FEC_RXCLK (input)
M4
FEC_RXD[3:0] (inputs) FEC_RXDV FEC_RXER
M1 M2
Figure 26. MII Receive Signal Timing Diagram
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 39
Preliminary Electrical Characteristics
5.16.2 MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TXEN, FEC_TXER, FEC_TXCLK)
Table 24 lists MII transmit channel timings. The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the FEC_TXCLK frequency. The transmit outputs (FEC_TXD[3:0], FEC_TXEN, FEC_TXER) can be programmed to transition from either the rising or falling edge of FEC_TXCLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs. Refer to the Ethernet chapter for details of this option and how to enable it.
Table 24. MII Transmit Signal Timing
Num M5 M6 M7 M8 Characteristic FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER invalid FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid FEC_TXCLK pulse width high FEC_TXCLK pulse width low Min 5 -- 35% 35% Max -- 25 65% 65% Unit ns ns FEC_TXCLK period FEC_TXCLK period
Figure 27 shows MII transmit signal timings listed in Table 24.
M7
FEC_TXCLK (input)
M5
FEC_TXD[3:0] (outputs) FEC_TXEN FEC_TXER
M6
M8
Figure 27. MII Transmit Signal Timing Diagram
5.16.3 MII Async Inputs Signal Timing (FEC_CRS and FEC_COL)
Table 25 lists MII asynchronous inputs signal timing.
Table 25. MII Async Inputs Signal Timing
Num M9 Characteristic FEC_CRS, FEC_COL minimum pulse width Min 1.5 Max -- Unit FEC_TXCLK period
Figure 28 shows MII asynchronous input timings listed in Table 25.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 40 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
FEC_CRS FEC_COL M9
Figure 28. MII Async Inputs Timing Diagram
5.16.4 MII Serial Management Channel Timing (FEC_MDIO and FEC_MDC)
Table 26 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.
Table 26. MII Serial Management Channel Timing
Num M10 M11 M12 M13 M14 M15 Characteristic FEC_MDC falling edge to FEC_MDIO output invalid (minimum propagation delay) FEC_MDC falling edge to FEC_MDIO output valid (max prop delay) FEC_MDIO (input) to FEC_MDC rising edge setup FEC_MDIO (input) to FEC_MDC rising edge hold FEC_MDC pulse width high FEC_MDC pulse width low Min 0 -- 10 0 Max -- 25 -- -- Unit ns ns ns ns
40% 60% FEC_MDC period 40% 60% FEC_MDC period
Figure 29 shows MII serial management channel timings listed in Table 26.
M14 M15
FEC_MDC (output)
M10
FEC_MDIO (output)
M11
FEC_MDIO (input)
M12
M13
Figure 29. MII Serial Management Channel Timing Diagram
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 41
Preliminary Electrical Characteristics
5.17 32-Bit Timer Module Timing Specifications
Table 27 lists timer module AC timings.
Table 27. Timer Module AC Timing Specifications
Name T1 T2 Characteristic Min DT0IN / DT1IN / DT2IN / DT3IN cycle time DT0IN / DT1IN / DT2IN / DT3IN pulse width 3 1 Max -- -- tCYC tCYC Unit
5.18 QSPI Electrical Specifications
Table 28 lists QSPI timings.
Table 28. QSPI Modules AC Timing Specifications
Name QS1 QS2 QS3 QS4 QS5 QSPI_CS[3:0] to QSPI_CLK QSPI_CLK high to QSPI_DOUT valid. QSPI_CLK high to QSPI_DOUT invalid. (Output hold) QSPI_DIN to QSPI_CLK (Input setup) QSPI_DIN to QSPI_CLK (Input hold) Characteristic Min 1 -- 2 9 9 Max 510 10 -- -- -- Unit tCYC ns ns ns ns
The values in Table 28 correspond to Figure 30.
QS1
QSPI_CS[3:0]
QSPI_CLK QS2 QSPI_DOUT QS3 QSPI_DIN QS4 QS5
Figure 30. QSPI Timing
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 42 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
5.19 JTAG and Boundary Scan Timing
Table 29. JTAG and Boundary Scan Timing
Num J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 Characteristics1 TCLK Frequency of Operation TCLK Cycle Period TCLK Clock Pulse Width TCLK Rise and Fall Times Boundary Scan Input Data Setup Time to TCLK Rise Boundary Scan Input Data Hold Time after TCLK Rise TCLK Low to Boundary Scan Output Data Valid TCLK Low to Boundary Scan Output High Z TMS, TDI Input Data Setup Time to TCLK Rise TMS, TDI Input Data Hold Time after TCLK Rise TCLK Low to TDO Data Valid TCLK Low to TDO High Z TRST Assert Time TRST Setup Time (Negation) to TCLK High Symbol fJCYC tJCYC tJCW tJCRF tBSDST tBSDHT tBSDV tBSDZ tTAPBST tTAPBHT tTDODV tTDODZ tTRSTAT tTRSTST Min DC 4 26 0 4 26 0 0 4 10 0 0 100 10 Max 1/4 -- -- 3 -- -- 33 33 -- -- 26 8 -- -- Unit fsys/3 tCYC ns ns ns ns ns ns ns ns ns ns ns ns
NOTES: 1 JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.
J2 J3 VIH J3
TCLK (input)
J4
VIL J4
Figure 31. Test Clock Input Timing
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 43
Preliminary Electrical Characteristics
TCLK
VIL J5
VIH J6
Data Inputs
J7
Input Data Valid
Data Outputs
J8
Output Data Valid
Data Outputs
J7
Data Outputs
Output Data Valid
Figure 32. Boundary Scan (JTAG) Timing
TCLK
VIL J9
VIH J10
TDI TMS
J11
Input Data Valid
TDO
J12
Output Data Valid
TDO
J11
TDO
Output Data Valid
Figure 33. Test Access Port Timing
TCLK
J14
TRST
J13
Figure 34. TRST Timing
5.20 Debug AC Timing Specifications
Table 30 lists specifications for the debug AC timing parameters shown in Figure 36.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 44 Preliminary Freescale Semiconductor
Preliminary Electrical Characteristics
Table 30. Debug AC Timing Specification
Num DE0 DE1 DE2 DE3 DE4 DE5
1
Characteristic Min PSTCLK cycle time PST valid to PSTCLK high PSTCLK high to PST invalid DSCLK cycle time DSI valid to DSCLK high DSCLK high to DSO invalid BKPT input data setup time to FB_CLK high FB_CLK high to BKPT invalid -- 4 1.5 5 1 4 4 0 Max 0.3 -- -- -- -- -- -- --
Units tcyc ns ns tcyc tcyc tcyc ns ns
DE6 DE7
NOTES: 1 DSCLK and DSI are synchronized internally. DE4 is measured from the synchronized DSCLK input relative to the rising edge of FB_CLK.
Figure 35 shows real-time trace timing for the values in Table 30.
PSTCLK DE0 DE1 PST[3:0] DDATA[3:0] DE2
Figure 35. Real-Time Trace AC Timing
Figure 36 shows BDM serial port AC timing and BKPT pin timing for the values in Table 30.
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 45
Revision History
FB_CLK
DE6
BKPT
DE7
DE5
DSCLK DE3 DSI Current DE4 Next
DSO
Past
Current
Figure 36. BDM Serial Port AC Timing
6
Revision History
Table 31. MCF5329DS Document Revision History
Rev. No. 0 0.1 * Initial release. * Added not to Section 4, "Mechanicals and Pinouts." * Added "top view" and "bottom view" where appropriate in mechanical drawings and pinout figures. * Figure 9: Corrected "FB_CLK (75MHz)" label to "FB_CLK (80MHz)" Substantive Changes Date of Release 11/2005 3/2006
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 46 Preliminary Freescale Semiconductor
THIS PAGE INTENTIONALLY LEFT BLANK
MCF5329 ColdFire(R) Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 47
How to Reach Us:
Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.
FreescaleTM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.(c) Freescale Semiconductor, Inc. 2006. All rights reserved. MCF5329DS Rev. 0.1 03/2006


▲Up To Search▲   

 
Price & Availability of MCF5329CVM240

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X